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NASATT F-14,576

A TIIEORYOFCALCULATIONOFFLUTTERVIBRATIONSIN SUBSONICFLOWS1

W. Roth

ABSTRACT.Calculation of a critical flutter velocity for a
membranein a nonconservative system. It is shownthat the
damping forces have a destabilizing effect and that a dis-
continuity appears in the stability criterion which depends
on the damping coefficient and is characteristic of noncon-
servative systems. By meansof this theory, the flutter
of weather vanes or sails, aslwell as the related traveling
transverse waves, can be explained.

I. Introduction.

The calculation of the flutter oscillations of a thin profile or a plate

without flow may be accomplished using the singularity method by means of a

fictional vortex layer that changes with time. The calculation is relatively

complex and vague; it eventually leads to the problem of the solution of an

integral equation. Kuessner [i], Schwarz [2] and Soehngen [3] performed

calculations of flutter oscillations in 1936-1940. The calculation would be

much simpler if there were a pressure law that would describe the reaction

of the flowing medium on a plate element as an explicit function of the

deformation of the elements. Such a pressure law would have the advantage

that the problem of calculating the flutter oscillations would be separated

from concepts of aerodynamics and become a pure problem of technical oscilla-

tion theory. Now such a pressure law is available for supersonic flows,

provided by Ashley and Zartarian [4] according to the "Piston Theory." One

is therefore led to wonder whether or not such a pressure law could be

obtained for incompressible flows as well.
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iThe present paper was delivered in abbreviated form by the author at the

GAMbl Congress in Zuerich (1967), under the title "A Contribution to the

Calculation of Flutter Oscillations."

*Numbers in the margin indicate pagination in the foreign text.



II. Derivation of the Pressure Law.

In the following discussion% it will be assumed that we are dealing with

incompressible flow which is essentially friction-free. The flow around an

oscillating plate will be compared with the flow inside an oscillating tube

through which a medium is flowing_ Such tubes have recently been studied

in connection with their stability [5], and the results of the calculations

are also in agreement with the phenomona that occur in technology. In order

to understand the forces that are created at the tube wall by the flow

velocity v of the medium in the tube and those causing the movement of the

tube, see Figure i. A medium element With relative velocity v r = v is

moving through the oscillating tube element with a deflection z(x,t). In the

kinematic sense, the tube element constitutes a vehicular element, toward which

a medium element moves with relative'velocity vr. A familiar principle of

kinematics [6], however, says in connection with such a relative movement

toward a vehicle that the absolute acceleration is composed additively of

three components, So that i

b = bf + br + b c,

where bf is the vehicular acceleration, b r is the relative acceleration, and

bc is the Coriolis acceleration. Sincei in the present case the motion of the

tube elements occurs primar±ly in the q-direction, bf = ztt. The relative

acceleration at constant r consists of'the relative centripetal acceleration

br=V Zxx. The Coriolis acceleration iJ calculated as follows
)

_2Cw_b e vr)
i

!

so that with an angular velocity of the vehicle m = Zxt we will have

b c = 2 v Zxt. If we let q equal the force exerted by the tube wall on the

flowing medium, based on the unit length of the tube axis, the motion equation

of the medium element in the directionof the instantaneous perpendicular

to the trajectory plane will be

+ 2 v + d x,q dx = VF (V2Zxx Zxt ztt)

/2__i4



from which we obtain as the reaction of the flowing medium against the tube

wall, the line load q as follows: ........

= + 2 v- + . (ll.l)q _F (v2 Zxx Zxt ztt)

Z

\

Of

I
0

Figure 1. Kinetic Values For a Tube

Element with Flow Through It.

In this pressure law, _F through

the internal cross-section of the tube

according to the filamentary flow

theory applied here is a known mass

of the flowing medium directly in-

volved in the transverse oscillations

of the tube, based on the unit length

i of the tube axis. As far as the tube

_i' is concerned, there is no objection

to using (II.l), at least when a

very thin tube is employed, for which

the ratio r/L composed of the tube
T L_' '

radius ir Of the internal cross section

and the tube length 1 is much less than i. A theoretical expansion of (II.l)

occurs which is valid with respect to technical applications as well, if the

right-hand side of (II.1) is increased iby a damping factor, so that we have

q = _F (v2 Zxx + 2 v Zxt + ztt ) + 60 zt. (II.2)

Such an assumption of damping with damping factor 60 is necessary in the sense

of modern stability theory according to Lyaponov [7], and to a certain degree

is even necessary, as we shall see later on in the discussion of the results.

The pressure law (II.2) can be applied to a plate around which a medium is

flowing if q and _F are based on a unit area of the plate and weight per unit

area _F is assumed known. The pressure law given by the "Piston Theory" for

supersonic flows, in comparison with (II.2), is

t + 60 zt, (11.3)q _i v zx

where 61 =_0 = <p_/c represents a coefficient determined by the medium;

here < is the polytropic exponent, p_ and c are the pressure and speed of
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sound in an undisturbed medium. It is advantageous for further calculations,

however, to ensure a discussion o_the_res_!ts that is as.complete as possible,

so that 61 # 60 . In (II.3) the deflection of the plate element is'contained!

in only one term with the deri_$ye z!; t_e Second term in this instance also_

represent_ damping.

III. Calculation of the Critical Velocity for a Membrane with Rectangular

Boundaries.
i
i
i

We shall now use pressure laws (IIl2) and (II.3), for comparison of the

results they yeild, in the case of a mc

boundaries subjected to flow in the x-,

_ is assumed to be stressed in the x- anc

based on the unit length, and these fo_

pressure forces. Since the edges of t]

desired solution z (x, y, t) for the m,

the boundary conditions

z (x, 0, t) .... 0 ........

z (x, d, t) = 0

In addition, in the sense of the stabil

disturbances

mbrane CFigUre 2) with rectangular

irection at velocity v. The membrane

y-directions by forces S 1 and S2

ces are further assumed to be positive,

e membrane are assumed fixed, the

vements of the membrane must satisfy

Z

ity study at time t = 0, the initial

t) = 0 ................. ,

Cc, y, t) = 0. (III.i)

z Cx, y, O) _ (x, y)' z t (x, y, O) = _ (x,y) (III.2)

may be given for the initial deflectio] and the initial velocity, where the

functions _ (x, y) and _ (x, y) are raldom within rather broad limits. If

t' the pressure law (II.3) is initially, a_plied to the membrane, we will obtain !i
' the partial differential equation
.... i i

S1 Zxx + S2 Zyy + _p Ztt + 61 v Zx + 60 zt = o., (III.3)

as a motion equation, in which _p is _he weight per unit area of the membrane:.

It is not necessary to assume an additional external damping in this equation

which is proportional to the deflecti°n, velocity zt; instead, this can be
i

t'l "

4
r-
!

L _ _
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thought of as included in the damping factor 60 since 61 _ _0

numbers may therefore be thought of as independent of each other.

expression ....

_my (m = I, 2 3, )z = u(x, t) sin --_ ....

(III.3) is changed to the partial differential equation

n_ m2

S 1Uxx + up utt + 61 v Ux + 60 ut - S 2 --_u = 0.

and the two

With the

(I_1.4)

This equation can then be solved by means of the separation expression

ixx i_t
u = e e (III.5)

where, with maintenance of the boundary conditions in x according to

(Ill.l) and summation over all existing particular integrals the following

solution can be obtained:

•_ill .'T I_'_ /t,I (el.,. _,,_r..... r _ rz,,' _,,_.,_,)

(III .6)

/26

Here, Clm n and C2m n are freely selectable constants, and the characteristic

exponents of the time are therefore

fJ._lZ.,._ =- -- -9/tl, :L: 4/_1" 4/,i.,_', _" /rl. _1 I 1- ,ul. _" "

These exponents describe the behavior of equation (III.6) with time. In order

to develop the solution z (x, y, t) to satisfy random initial disturbances

(III.2) according to (III.6), all particular integrals are require, d, and

hence the exponents (III.7) must be discussed for all combinations of whole-

-number values of m and n. It is advantageous in conjunction with further

calculation to consider separately the two different cases 60 = 0 and 60 > 0

with arbitrary 61 $ 0. If we initially assume that _0 = 0, i.e., if we

calculate without damping, it becomes evident that instability is avoided

either because no oscillations developed that become apparent with time or

(what amounts to the same thing) exponents i812mn exhibit no positive real

parts, if

Sl _ 0 and S2 < 0 (III.8)



for all values of 61 _ O. However, if we assume that 60 < 0 and thereby

assume damping, the requirement for avoidance of instability imposes the

condition (III.8), although stability is now assured and a behavior of

solution (III.6) exists which decreases with time. Criterion (III.8) therefore

requires validity for all combinations of numbers 60 _ 0 and 61 _ 0 which are

involved. The stability criterion S1 < 0 and S 2 < 0 which applies here is,

however, actually trivial. It does indicate, however, that the membrane

must be stressed in the x- and y-direction only by means of tension in order

to avoid instability. From the physical standpoint, it is remarkable and

really not very convincing that criterion (III.8) does not contain the flow

velocities v, and that there is consequently no critical velocity vk to cause

flutter oscillations of the membrane. Hence, the true principal and different

movement conditions are stable or unstable at the membrane plate regardless

of the magnitude of the flow velocity v. This result can also be found in

Bolotin [8]. When bending resistance is included in the calculation, however,

the velocity v of the medium can influence the stability of the plate [4], [9].

The application of pressure law (II.2) to the membrane leads to a solution

for the z (x,y,t) which is different from (III.6), and the stability criterion

is also structured completely differently from the criterion (III.8). The

motion equation for the membrane which is to be solved is then the partial

differential equation

(_Ii .9)

with

/27

(III.i0)

and _ = _F + PP is the sum of the weight per unit area PF of the flow medium

and the weight per unit area pp of the membrane. With the assumption (III.4)

which satisfies the boundary conditions for z (x,y,t) in y according to

(Ill.l), we obtain from (III.9) the partial differential equation
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,-'qlz 'Ua',r -i- "2t' /11,"u.,.t t- ff utt "l" '_0 "ue --- /qz ,t -) "e_= O,

which can be solved by means of the separation expression (III.5) or directly

by means of the expression

H 3"

..(x,t)= /,' (a .r + b t) sin -% - (n= l,.,') 3,...).

Here, F (ax + bt) constitutes a transverse wave moving through the membrane

in the x-direction at a velocity

w -_ -- a = -v/[_, (III. ii)

For the function F, we can find the conventional second-order differential

equation ......

............I' 171']dl¢u _ tilt 1_ I_ _'t** It [ji NI**

with the argument u = ax + bt and

NI** .=- N t .-_ v'* pJ.'l_v
I' (III .12)

The exponential expression F = exp iru gives the characteristic exponents

for the time

and the so_htionof (III.9)then has the form

= (a', s/, 1)

¢ h_ t7l 1__o ,-,r i r h i tn rl " "

E Z .... 1/', ,11 ( (.t: -- 14,1) -- t--.-(.t--Ltl)
.... sill _ J1 _" sill .'7 C e _v t C2m n e '

- C d I in t_ )

DI .. ] PI _ ]
or

(III.14)

,. ,/ (III.15)
III _ 1 I1 l

• (,'l,,,,, b'_,_,, (..," _ b t) -! c,_,,,,, b'2.,,, (..r _ b t))
i ....

with constants elm n and c2m n which are again random. These constants can be

established so that the initial disturbances (III.2) are satisfied. The

transverse waves Flm n (ax + bt) and F2m n (ax + bt) alone do not satisfy the

/28



_nx
boundary conditions in x for z (x,y,t), since although the factor sin --

C

appears in the solutions of (III.14) and (Ill.15), these waves are distorted

quasilocally or locally and the result is that the edges of the membrane

remain at rest and do not undergo deflection. Solutions (III.6) and (Ill.14)

as well as (III.15), however, display exponential dependence on the wave forms

in x. Such wave forms were also given by Sparenberg [10] for an infinitely

long membrane subjected to flow. Different results were obtained here,

however, with respect to behavior with time. In order to determine the

behavior of the solutions with time, the exponents (III.13) must be discussed by

analogy with the above. It turns out that instability with vanishing damping

_0 = O can be avoided if

or _.,= 0 and _,** < o (IIl.16)

or ,_'_ > 0 and X,**< o and S_* "> o

or 1".... '_' - - I / --;-i 'q'i . ".
--I_F <" v-.C l I_" lit, •(

On the other hand, if we assume damping with _0 > 0, in order to avoid in-

stability or implementation of stability we will have the requirement

(III.17)

We can enjoy only a slight degree of conviction in accepting criterion (III.16)

in contrast to (III.17) because of its inhomogeneous structure, which includes

numerous possibilities and because it also partly contains the force Sl**

which cannot be explained physically. Hence, from the physical and technical

standpoint, it is also unacceptable because it was developed without considera-

tion of damping and damping forces are always present in reality. The

stability theory of Lyapunov offers the clue that the criterion (Ill.17)

obtained with consideration of damping may be considered correct. Criterion

(III.16) can only guarantee avoidance of instability but cannot guarantee

establishment of stability, inasmuch as 60 = 0 was assumed in establishing

this criterion. However, according to Lyapunov, this is precisely the

critical case, in which the theory predicts that the smallest nonlinearities

/2_29
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which were disregarded in the p_'esent linearized calculation, can lead to

stability or instability. It is therefore, in fact, uncertain which motion

condition actually exists. However, if damping is taken into account in the

calculation and we require avoidance of instability, stability will in fact

be achieved, and the disregarded nonlinearities cannot cause any further

changes in this result. The stability criterion thus obtained (Ill.17) is

also very clearly composedaddditively of the stress S1 on the membraneand
the motive power produced by the stream pressure v2 _F" It states that the
stress on the membranein the x-direction must necessarily consist of a

pull S1 < O, for a stable motion state to be possible at all, and then allows

calculation of the critical flow velocity vk for the membranein the form

'_'_- - I'_' ' (III.18)

The damping factor _0 is no longer contained in this criterion, and criterion

(Ill.16) is not always obtained for 60'4 0 from (III.17) or (III.18). Hence,

there is a discontinuity with respect to damping f_ctor _0 in the stability

criteria. Since criterion (III.17) or (III.18) exists only with consideration

of damping, the present result may also be interpreted as indicating that the

damping that exists when pressure law (II.2) is applied has a destabilizing

effect on the oscillating membrane and ensures that flutter oscillations

develop for all flow velocities v > Vk-

Instability phenomona, caused by critical velocities, can also develop

in the case of rudders or single-bladed weather vanes. This discovery was

made by Weidenhammer [ii]. In such a system, with one degree of freedom,

the critical velocity depends on the damping factor, while the critical

velocity given by criterion (III.18) is independent of the value of the

damping factor. In order to obtain unsteadiness in the stability criterion

with respect to the damping factor, the system must possess at least two

degrees of freedom. Ziegler [12] was the first to show the destabilizing

effect of damping on a mechanical system and the resultant unsteadiness in

the stability criterion for a double pendulum with accompanying load.



IV. Determination of the Weight Per Unit Area or Pressure Layer.

The calculation, as performed thus far, is based on a known weight per

unit area _F of the flowing medium. The critical flow velocity v k according

to (V.10) is dependent on _F' and the value of _F is likewise dependent on

the form of oscillation of the membrane. In the following, we shall describe

a calculation of _F which is based on the singularity method. According to

Birnbaum [13] and Glauert [14], the flow around a thin profile (Figure 3)

can be obtained through interaction with a vortex layer of intensity k Cx).

The induced velocity v0(x ) at point x, caused by the totality of interactions

k(x _) at points xlpis given by the Biot-Savart law

e

1 ( K (,r') d/
% 09 = -2 = j - (.,:,_: x_ •

X t = 0

"\ J////////

Figure 2. Membrane Plate With Rec-

tangular Boundaries Subject to Flow.

a 2r _" c

i

Figure 3. Flow Around a Thin Profile

With Application of a Vortex Layer.

The expression _.
c,o

n--- I

(IV.l)

for the vortex application k(x), with

c (1 - cosO) andsubstitutions x =
c

X 1 = _- (i - COSq_) (0 =,<@ =< _, 0 =< _ :< _)

with consideration o_f i_ntegral values

,,o_,,.4a_ .i,_,,o (,_:=o,1, % .)• (_o,_,p - ei_.-(-)) =- "_ _i,, 0 " ' "

and the flow condition, becomes

"o(,r) dz
--v- " =-_t_, ..... Ao q _ ..I. cos. 6).

(IV.2)

I0



tl_J_ and _t obtaJ_

.';_, = . d.,' de% .4j, _ . ,/.,. ¢'cJ_7_,/_J.

The lift, based on the unit length of the profile depth_is calculated according

to the gutta-Joukowski lift formula with consideration of the corresponding

sign determination which applies here and the density p of the medium at d P/dx

q = vpk(x). If we equate this lift to the static pressure components

developed in the pressure law (II.2) by the relative centripetal acceleration

[Figure I), and use (IV.l),_.we willhave

[ I "q=_2ev2 Aoc{g- 2 _ ,-I,,sinnO =z'_/l_'z

and thus obtain for the weight"pe_ u_it .ar_ea ....

• ,, . (IV.3)
Sl |

llp ..... '2 _ .,,

Thus, the value obtained in this fashion for _F can also be used for the

terms in motion equation (III.9) in the sense of an approximation theory

for describing the flutter oscillations, Since _F can also be interpreted

as the weight per unit mass of a flowing medium for a tube with curvature

zII with flow through it and having a rectangular cross section of width

equal to i, division by the density p of the medium gives the height h of

the cross section, so that _F = ph. This height h can be represented as the

thickness or the height of a pressure layer, in which the pressure buildup

on the surface of the membrane subjected to flow is created by the flowing of

the medium at the velocity v, governed by the centrifugal forces of the

medium elements in the vicinity of the bent membrane. The flow around the

membrane can therefore be expressed by the totality of an infinite number of

tubes having cross sectional height h and infinitesimal cross sectional width

dy arranged close together and parallel to the x-axis. Hence, the motion

process of the oscillating membrane with flow over it is attributed primarily

to the interaction between the membrane and the pressure layer or the weight

per unit area >F by analogy with the tube with flow through it. The flow

ii
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around the membrane plate corresponds to flow through a tube with a bending

resistance E I = 0, or flow through a hose [15]. The weight per unit area

_F from (IV.3) or the thickness h of the pressure layer will generally vary

with the profile coordinate x 9r @. Hence, it is appropriate within the scope

of an approximation method, such as is developed here to introduce an average

value for _F which is still more exact instead of _F and likewise introduce

an average value for the pressure layer thickness h as well. In order to

obtain initially an estimate of the order of magnitude of _F and to ascertain

the influence of constant curvature of the profile with a bulge f on the

weight per unit area, we will assume for the circular profile according to

Figure 4
/

z_-2-(] - eo_20),

which has the curvature zII 8f
= c--i,to be the result of the calculation.

f

will have A0 = 0, A 1 = 4 _ and A = 0 (n = 2 3,4,...). Hence

(IV.4)

We

/32

as the average weight per unit area VF we will have
r

/t/,.== c. 4 '2c : 0,7N5@¢ (IV.6)

as the average value over the upwardly convex profile with profile depth c.

The average thickness of the pressure layer is therefore

1_= 4 c : _ o,7s5c. (IV.7)

Determination of VF and h is accomplished with particular simplicity in this

case, since in (IV.3) the curvature that appears in the denominator for the

profile (IV.4) is constant over the entire depth of the profile.

Z

i

o _k---2"

. I

\ ,
12

Figure 4. Circular Profile With Flow
Around It as the Lowest Possible Form

of Oscillation of the Membrane.



The lowest form of oscillation of the membraneplate can be approximated

by the circular pattern of the deflections according to (IV.4). Higher

oscillation forms can be approximated by lining up such segments of a circle

with alternating signs, so that a periodic wave train results, which correspond

to a sinusoidal pattern for the wave profile at higher wave numbers. This

approximation would have the advantage that in (IV.3) the curvature zII would

be constant for each segment and therefore taking the average over _F would
also be simple from the calculating standpoint. In the meantime, however,

on the assumption of such a waveprofile, the curvature over the base c of

the profile would behave in an unsteady fashion, and the calculation would

prove to be quite tedious as far as determining the deflections z according to
Fourier from the curve of the curvatures is concerned. Hence, for the profile

A

z--fsitt(2X--1) -_'C (i : 1, "' 3 .... ) (IV.8)

which describes a sinusoidal half-arc Over the base c with _ = 1 and which

can then be compared with the circular profile (IV.4), after which the weight

per unit area VF can be determined. For values X > 1 (IV.8) describes a

profile with 2_ - 1 half-wave s. If we !recall that the r_lationship

cos (.,, si, V) = Io (.c) q- 2 _ &,, (.r) cos '2 ,_ _ (IV.9)

exists, where the 12n(X ) are the Bessel functions of the first type and the

second order, we will then obtain for the profile according to (IV.8) as a
i

function of the coordinate @ using (IV.9)

I " ]z----/(--1, _ 1o(i_--_)+ 2X12,(lx---_l(--l"eo'2'_O •
tl "_ 1

The flow condition (IV.2) then becomes

-3_-=-,Ix- = (-- 1)_8 T_._ I2" I _ -- (-- l)_Tt--sin-o--.
n--I

If we use the relationship

n

sit_ 2 '. 6)
slnO --2 X e°s (2 i --1) 0' (n= 1, 2, 3 .... )

i_l

13
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we will then have

•t,, (z) dz
V dx

r_ ¢1)

ao

/ (2 1) o= (- 1)" 16 -¢ _ a,.,.-1 cos m -
S¢--|

I
= (- 1)' 16_

with

cos (2m-- 1)O =

eo

1J, in

If we compare this result with the flow condition (IV.2), we will obtain the

coefficients of the vortex interaction with A 0 = 0, An = 0 (n = 2,4,6,...) and

z m =_-==-x,) z" dx --: (-- 1)_ 2 ._ - _ - l) 2

For calculating the average weight per unit area _F we must now define an

average value . _., __

, , ( )Aa = (-- 1)"16-c-a2,.-1 = (-- 1/ 16 c Z i._p ,_..t- 2 (- l)pp.
v .... (IV.tO)

; (n = 1, 3, 5 .... )

for

average half-wave of the wave profile

to the point x 2 - c_ Here

(IV.8) from the point x 1

Agctg -2- + Z A._in. O ,I.v

represents the arithmetic mean over the same region of the profile (IV.8).

It is attained in such a fashion that the curvature of the profile (IV.3)

behaves constantly approximately like a circular wave profile.

calculation then gives

1 oc IA (2_+sin"_)+),v : -- -2- (x, --" _) z"_ l

of,

4- 4 -(,_' ;/-i}- sin -2 (n sin n _"cos e -- cos n +:.sin _)

(IV.3), in which the integration extends over the central portion of the

: c(x - 1)
(2X - 1)

Further

(IV.ll)

/3_!4
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for the profile (IV.8) or

- 4 0r [5_,= -- _ (ZX-Z--I) a_(2_ +._in2_-)--
[

(- 1)" <,.,,,-I . ] (IV.12)
"- _ -_r;i-(,_F_L-1)-- ((2 m -- 1) sin (2 ,_t -- 1) c cos c -- co_ (2 m - 1) _:sin _')1 "

is the complementary angle of the angles 91 and @2 associatedThe angle

with boundaries x I and x2, I

sin t _- -._.-.-_--;.-

C

between which the relationships @I = _i- e' 02 = _ + s, x I = _ (i - cos@l)
C

and x 2 = _ (1 - cos02) hold. The numerical evaluation of (IV.12) for X = 1
i

leads to s = _ and then to the disappearance of the entire sum expression in
! :

(IV.ll) and (IV.12), so that

remains. For this lowest half-wave number, we obtain the value of coefficients

a I to aI = - 0.223, so that

/_t, _= 0,890 _

(IV.13)

and for the thickness of the pressure layer we Will have the value

h = 0,89Oc (IV.14)

The differences between the numerical values (IV.6) and (IV.7) for the

circular profile and the values (IV.13) and (IV.14) for the s nusoidal profile

are relatively slight according to the method used for taking the average,

which represents a certain confirmation of the accuracy of this type of

approximation. Figure 5 shows the manner in which _F is dependent on the

higher half-wave numbers of the profile. In this diagram, the curve of _F/PC

according to (IV.12) and therefore that of h/c over the higher half-wave

numbers X is shown.

O,a -,

<,hi
°,,tii
0 / Z 3 # S £ 7 8 ,9

Figure 5. Dimensionless Weight Per Unit Area

_F/PC or Dimensionless Pressure Layer Thickness

h/c as the Function of the Wave Factor X of the

Oscillating Membrane.

15
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The definition used for calculation of the average weight per unit volume

_JF or pressure layer thickness h fpund in (IV. IO) contains a certain degree

of ar'b_trariness. As indicated by a comparison of numerical values with the

results of another, simplified calculation of _F' the defined taking of the

average (IV.10) does make sense from a mechanical standpoint. If we use only

the central point of profile @ = _ on the middle half-wave for evaluating

the flow process around the wave profile due to the pressure distribution,

and perform the calculations for this point, for which the curvature of the

profile z"=(-- I) -_,- _-- I)_

is _F according to (IV.3), we will have

t'_ = -- 2_,- -tf_--i_'- [a_ -- a_ + a_ -- a7 + • • .].

It is, however, .......

and therefore the formula
oO

I'F-----n''(2).-Z--l]' E /_14¢ 2x--- (I q- 2i1, (IV.IS)
foN

which is much simplier in contrast to (IV.II) and (IV.12), is available for

calculation of the weight per unit area or pressure layer thickness. The

values calculated for _F in this fashion can also be used as representatives

of the value DF . If we designate the values that follow from (IV.15) with

_* and likewise those for pressure layer thickness with h* and carry out theF

calculation for the odd numerical values A = 1,3,S,7 and 9 the weight per

unit area and pressure layer thickness accordin_ both to (IV. 12) and (IV.IS),

the factors of these values can be taken from the table. The maximum

deviation between the numerical values occurs in the case of k = i. However,

since the factor of _* o_ h* calculated according to the simplified formula
F

(IV.iS) for these lowest forms of oscilation of the membrane plate is located

between the factor (IV.6) and (IV.7) for the circularly curved contour and

the factor (IV.IS) and (IV.14) for the sinusoidal half-wave, the values

calculated in simplified fashion according to (IV.IS), which are always

smaller than those from (IV.12), are also acceptable. The factors calculated

/3_!
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in those ways, in the case of even X-values, lie slightly below the curve

plotted for odd X-values. The reason for this is the fact that in the case

of even X-values their downwashof the profile at the point x = c relative
C

to the bulge of the profile at point x = _ is opposed as in the case of

odd values of _. Numerically, these deviations which actually lead to a

slightly s nusoidal pattern of the curve in Figure S and the corresponding

curve which describes relationship (IV.15) (they are not indicated in

Figure 5) are so small that they can remain undetected. Finally, these

discrepancies are a consequence of the combined representations of the average

values, which can, however, be eliminated easily by combining several half-

waves of the profile in the averaging _rocess, so that a smoothing of the

curves results. For practical requirements the averagings of _F and h will

suffice; since it is better to keep _F!numerically larger rather than too

small, there is a safety factor provided in calculating the critical velocities.

I 1

)
3

I[#; l_t'/O c 0,16187

h*/c; t+*_/O c 0,15065

I 0,89037

0,81256
l0,08439 0,05827 ! 0,04373

0,08084 0,05488 ! 0,04144

V. Prospects.

The calculation of the critical flow velocities vk of the membrane

according to (III.18) is now possible using the weight per unit area _F

which we have determined. The lowest critical velocity vk is obtained for

the lowest form of oscillation of the membrane with a half-wave as a deflection

for which (according to IV.13) _F = 0.890 pc, so that

I Ni
- e<'- (V.1)

Higher critical velocities are given higher wave numbers for the membrane.

Thus, for example, for _ = 3, i.e., with 5 half-waves of the profile, the

factor in (V.I) under the radical is 6.173 according to (IV.12) (Table),

so that [,+-=-- ,,+,
v_. := ,'-- 6,173 e+ = 2,48|+ ec (V.2)
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For _ = 2, in other words, for 3 half-waves of the profile, we obtain _F = 0.275

pc from Figure 5, and thus obtain _ _alue of 1.91 for the factor in front of

the radical in (V.l) and (V.2). Assignment of the wave numbers to the various

appropriate critical velocities iS therefore possible in theory with the aid

of Figure 5, from which the factors of the _F/_C values can be taken. In the

case of even half-wave numbers, the calculation was not performed. It could

_x (_ = 1,2,3, )
be done, however, with the analogous expression z = f × sin 2X _-- ...

corresponding to (IV.8). Instead, the_interpoiation can be carried out to
A

give the factors in front of the radical sign in the stability criterion (IV.I)

or also (IV.2) with sufficient accuracy. Thus, the value of the factor for

1 1.91) 1.49 and for four half-waves2 half-waves of the profile _ (i.06 + =
1

(1.91 + 2.48) = 2.20. However, formula (V.1) may be significant for

application, because one can c_!culate from it the lowest, indeed possibly

critical velocity vk and achieve stability of the membrane for all flow

velocities v below v k according (V.I).

Recently, Thwaites [16], Nielsen [17], and Heynatz and Zierep [18]

investigated the stability characteristics of sails or membranes in a static

fashion, i.e., without consideration of supporting members under the assump-

tion that resting, critical wave shapes of the sails result which have critical

flow velocities 2. From [16] and [17], we can obtain the factor for the lowest

critical velocity in (V.I), 1.07; the factor for S half-waves of the profile

is 2.73. The table shows the factors calculated in the present paper on

Half-Wave ! I
NIlmh_ I,,

Factors ! i,o(_

Factors= ) 1,o7
)

3

,I i
! 1,66 , 2,0s
)

4 5

0 ,).,_0 2,4,_

"2,42 2 73

2The kinetic stability criteria for such sails with edges that are laterally

free are, however, the same as the criteria derived in this paper for membranes

with laterally fastened edges. This follows from the fact that the solution

(III.4) for the motion equation (III.9) then contains the cosine function

instead of the sine function in y.
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the first line and factors taken from [16] and [17] on the second line 3

The fact that even at five half-widths the difference between the numerical

values of 2.73 and 2.48 is still very slight constitutes a confirmation of

the theory described in this paper. In mechanics, it amounts to the agree-
ment of the static with the kinetic stability criteria for the bending rod.

In the present case, the situation is somewhatmore complex, since the

inclusion of the supporting memberand the damping in the motion equation

(III.9) gives a correct result only in conjunction with the proper pressure

law (II.2). The calculated results indicate that the pressure law (II.2)

is physically correct. It is not without interest from the mathematical
standpoint that even with a more general pressure law which is composed

additiv_ly from (II.2) and (II.3) the calculation again yields criterion

(III.18). As far as the derivation of this criterion is concerned, it is

important to have inclusion of the inertial term in the motion equation of

the membranecaused by the Coriol_s acceleration 2 v Zxt.

The flutter oscillations can be seen particularly well in the case of

ribbons or flags. Figure 6 shows a photograph of a ribbon in-a wind tunnel.

Onecan clearly see the instantaneous sinusoidal pattern, which changeswith

time, of the deflections of the membrane(cloth) during flow. This wave

pattern travels during flutter along the cloth with the wave velocity w that

follows from (III.ll). For the wave velocity, using vk according to (Ill.18),
we will obtain from (III.ll) the simple relationship

_,,=_ _'- - (V.3)

which expresses the wave velocity w as a function of the flow velocity v

and the appropriate critical velocity v k. In the case of all flow velocities

v < vk (subcritical or stable condition) the waves travel at a wave velocity

w < 0 against the direction of the flow velocity v through the membrane and

for all v > vk (supercritical or unstable state) the transverse waves travel

with a wave velocity w > 0 in the direction of the flow v through the membrane

/3!9

3The author would like to express his particular appreciation to Prof. Dr.

Zierep for this reference in the literature after the work had been completed,

thus enabling this comparison between humberical values to be made subsequently.
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J

Figure 6. Photograph of a Flu_tering Cloth in a Wind Tunnel

!
In the first case, nothing can be seen!of the flutter, since the slightest

disturbances are in_-nediately damped. _n the second case, the travel of the

transverse waves can be seen clearly. However, in the fluttering membrane

the same types of phenomona can b_ s_e_ as in an oscillating drive belt

which served in [15] as a special case of a tube with flow through it. In

particular, the test in the wind tunnel also revealed that as the flow velocity

v increases the wave velocity w likewise increases and according to (V.3) vw÷v.

Thus, in addition to the good agreement of the _bqve described numerical values,
! ................

it is a phenomenological confirmation Of the theory given above. In addition,.

the sails of sailboats moving with the wind show transverse oscillations of

the type under discussion. These flutter oscillations are not caused by

some disturbing objects in the airstream, such as the mast supporting the

sail of a sailboat, which could create:vortices and thus stimulate the

flutter oscillations, but they arise solely from the supply of energy in

the airstream. An energy balance based on the fluttering system composed

of the membrane is not possible, since any amount of energy can be drawn from

a medium flowing with a constant flow velocity v. This is a typical feature

of nonconservative systems, to which the membrane plate with flow over it

must be assigned and which leads to the described lack of steadiness in

the derivation of the stability criterion.

/40
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